Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
International Journal of Oral Science ; (4): 19-19, 2023.
Article in English | WPRIM | ID: wpr-982476

ABSTRACT

Periodontal bone regeneration is a major challenge in the treatment of periodontitis. Currently the main obstacle is the difficulty of restoring the regenerative vitality of periodontal osteoblast lineages suppressed by inflammation, via conventional treatment. CD301b+ macrophages were recently identified as a subpopulation that is characteristic of a regenerative environment, but their role in periodontal bone repair has not been reported. The current study indicates that CD301b+ macrophages may be a constituent component of periodontal bone repair, and that they are devoted to bone formation in the resolving phase of periodontitis. Transcriptome sequencing suggested that CD301b+ macrophages could positively regulate osteogenesis-related processes. In vitro, CD301b+ macrophages could be induced by interleukin 4 (IL-4) unless proinflammatory cytokines such as interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) were present. Mechanistically, CD301b+ macrophages promoted osteoblast differentiation via insulin-like growth factor 1 (IGF-1)/thymoma viral proto-oncogene 1 (Akt)/mammalian target of rapamycin (mTOR) signaling. An osteogenic inducible nano-capsule (OINC) consisting of a gold nanocage loaded with IL-4 as the "core" and mouse neutrophil membrane as the "shell" was designed. When injected into periodontal tissue, OINCs first absorbed proinflammatory cytokines in inflamed periodontal tissue, then released IL-4 controlled by far-red irradiation. These events collectively promoted CD301b+ macrophage enrichment, which further boosted periodontal bone regeneration. The current study highlights the osteoinductive role of CD301b+ macrophages, and suggests a CD301b+ macrophage-targeted induction strategy based on biomimetic nano-capsules for improved therapeutic efficacy, which may also provide a potential therapeutic target and strategy for other inflammatory bone diseases.


Subject(s)
Animals , Mice , Bone Regeneration , Cytokines/metabolism , Interleukin-4/therapeutic use , Macrophages/physiology , Mammals , Osteogenesis , Periodontitis/drug therapy
2.
Journal of Central South University(Medical Sciences) ; (12): 717-729, 2022.
Article in English | WPRIM | ID: wpr-939804

ABSTRACT

OBJECTIVES@#Because intracerebral hemorrhage (ICH) has high morbidity, disability and mortality, it is significant to find new and effective treatments for ICH. This study aims to explore the effect of butyphthalide (NBP) on neuroinflammation secondary to ICH and microglia polarization.@*METHODS@#A total of 48 healthy male SD rats were randomly divided into 6 groups: a sham 24 h group, a sham 72 h group, an ICH 24 h group, an ICH 72 h group, an ICH+NBP 24 h group, and an ICH+NBP 72 h group (8 rats per group). After operation, the neurological deficiencies were assessed based on improved Garcia scores and corner test. The expressions of Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), aquaporin-4 (AQP4), zonula occludens-1 (ZO-1), occludin, CD68, CD86, and CD206 were observed by Western blotting. Inflammatory cytokines were detected by ELISA. The immunofluorescence was to detect the polarization of microglia.@*RESULTS@#1) Compared with the sham groups, the expression of TLR4 (24 h: P<0.05; 72 h: P<0.01), NF-κB (both P<0.01) and Nrf2 (both P<0.01) in the perihematoma of the ICH group was increased, leading to microglia activation (P<0.01). The expressions of IL-6 (24 h: P<0.05; 72 h: P<0.01) and TNF-α (both P<0.01), the pro-inflammatory cytokines were up-regulated, and the expression of anti-inflammatory cytokine IL-4 was down-regulated (both P<0.01). Besides, the expression of AQP4 was enhanced (both P<0.01). The protein level of tightly connected proteins (including ZO-1, occludin) was decreased (all P<0.01). The neurological function of the rats in the ICH group was impaired in the 2 time points (both P<0.01). 2) Compared with the sham group at 24 h and 72 h after the intervention of NBP, the expressions of TLR4 (both P<0.05) and NF-κB (both P<0.01) were significantly declined, and the expression of Nrf2 was further enhanced (both P<0.05) in the perihematoma of the ICH+NBP group. Furthermore, the expression of M1 microglia marker was inhibited (P<0.05), and the polarization of microglia to the M2 phenotype was promoted (P<0.01). 3) In terms of inflammation after ICH, the IL-4 expression in the ICH+NBP group was increased compared with the ICH group (24 h: P<0.05; 72 h: P<0.01); the expression of IL-6 was decreased significantly in the ICH+NBP 72 h group (P<0.01); the level of AQP4 was declined significantly in the ICH+NBP 24 h group (P<0.05), there was a downward trend in the 72-hour intervention group but without significant statistical difference. 4) Compared with the ICH group, the ZO-1 protein levels were increased (24 h: P<0.05; 72 h: P<0.01), and the symptoms of nerve defect were improved eventually (both P<0.05) in the ICH+NBP groups.@*CONCLUSIONS@#After ICH, the TLR4/NF-κB pathway is activated. The M1 microglia is up-regulated along with the release of detrimental cytokines, while the anti-inflammatory cytokines are down-regulated. The expression of AQP4 is increased, the tight junction proteins from the blood-brain barrier (BBB) is damaged, and the neurological function of rats is impaired. On the contrary, NBP may regulate microglia polarization to M2 phenotype and play a role in the neuroprotective effect mediated via inhibiting TLR4/NF-κB and enhancing Nrf2 pathways, which relieves the neuroinflammation, inhibits the expression of AQP4, repairs BBB, and improves neurological functional defects.


Subject(s)
Animals , Male , Rats , Anti-Inflammatory Agents/therapeutic use , Cerebral Hemorrhage , Cytokines/metabolism , Interleukin-4/therapeutic use , Interleukin-6/metabolism , Microglia/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Occludin/pharmacology , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4/genetics
3.
Experimental & Molecular Medicine ; : 47-51, 1998.
Article in English | WPRIM | ID: wpr-192957

ABSTRACT

Panax ginseng roots have long been used as a medicinal herb in oriental countries. We have investigated anti-proliferative effects of lipid soluble Panax ginseng components on human renal cancer cell lines. Petroleum ether extract of Panax ginseng roots (GX-PE) or its partially purified preparation (7:3 GX) was added to cultures of three human renal cell carcinoma (RCC) cell lines, A498, Caki-1, and CURC II. Proliferation of RCC cells was estimated by a [3H]thymidine incorporation assay and cell cycle distribution was analyzed by flow cytometry. GX-PE, 7:3 GX, panaxydol and panaxynol inhibited proliferation of all three RCC cell lines in a dose dependent manner in vitro with an order of potency, 7:3 GX > panaxydol > panaxynol = GX-PE. Additive effect of interleukin 4 was also demonstrated, most prominently in Caki-1 which responded poorly to GX-PE alone. Analysis of cell cycle in CURC II and Caki-1 treated with GX-PE demonstrated increase in G1 phase population and corresponding decrease in S phase population. The present study demonstrated that proliferation of human RCC cell lines were inhibited by lipid soluble components of Panax ginseng roots by blocking cell cycle progression at G1 to S phase transition.


Subject(s)
Humans , Alkanes , Alkynes/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents, Phytogenic/therapeutic use , Carcinoma, Renal Cell/drug therapy , Cell Cycle/drug effects , Fatty Alcohols/therapeutic use , Panax/therapeutic use , Panax/chemistry , Interleukin-4/therapeutic use , Kidney Neoplasms/drug therapy , Plant Extracts/therapeutic use , Plant Roots/therapeutic use , Plant Roots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL